
OIKOS: The Ezekiel Guti University Bulletin of Ecology, Science

Technology, Agriculture, Food Systems Review and Advancement
Vol. 4 (1&2), 2025

i

 Volume 4 Issues (1&2), 2025

OIKOS: The Ezekiel Guti University Bulletin of Ecology, Science

Technology, Agriculture, Food Systems Review and Advancement
Vol. 4 (1&2), 2025

ii

©ZEGU Press 2025

Published by the Zimbabwe Ezekiel Guti University Press
Stand No. 1901 Barrassie Rd,
Off Shamva Road
Box 350
Bindura, Zimbabwe

All rights reserved

“DISCLAIMER: The views and opinions expressed in this journal are
those of the authors and do not necessarily reflect the official position of
funding partners”

Typeset by Divine Graphics
Printed by Divine Graphics

EDITOR-IN-CHIEF

• Justin Makota, Zimbabwe Ezekiel Guti University

MANAGING EDITOR

• Florence Chaka, Zimbabwe Ezekiel Guti University

EDITORIAL ADVISORY BOARD

• Ms. Fungai Mukora, University of Zimbabwe, Zimbabwe
• Dr. Richman Kokera. University of Zimbabwe, Zimbabwe
• Engineer Hilton Chingosho, University of Zimbabwe,

Zimbabwe
• Dr. Partson Paradza, BA Isago University, Botswana
• Dr. Jameson Kugara, University of Zimbabwe, Zimbabwe
• Mr. Denford Nhamo, City of Harare, Zimbabwe
• Dr. Netai Muchanyerei, Bindura University of Science

Education, Harare

OIKOS: The Ezekiel Guti University Bulletin of Ecology, Science

Technology, Agriculture, Food Systems Review and Advancement
Vol. 4 (1&2), 2025

iii

SUBSCRIPTION AND RATES
Zimbabwe Ezekiel Guti University Press Office
Stand No. 1901 Barrassie Rd,
Off Shamva Road
Box 350
Bindura, Zimbabwe
Telephone: ++263 8 677 006 136 | +263 779 279 912
E-mail: zegupress@admin.uz.ac.zw
http://www.zegu.ac.zw/press

http://www.zegu.ac.zw/press

OIKOS: The Ezekiel Guti University Bulletin of Ecology, Science

Technology, Agriculture, Food Systems Review and Advancement
Vol. 4 (1&2), 2025

iv

About the Journal

JOURNAL PURPOSE
The purpose of the Oikos - The Zimbabwe Ezekiel Guti University Bulletin
of Ecology, Science Technology, Agriculture and Food Systems Review and
Advancement is to provide a forum for scientific and technological
solutions based on a systems approach and thinking as the bedrock of
intervention.

CONTRIBUTION AND READERSHIP
Natural scientists, engineering experts, technologists, multidisciplinary
teams are encouraged.

JOURNAL SPECIFICATIONS

Oikos - The Zimbabwe Ezekiel Guti University Bulletin of
Ecology, Science Technology, Agriculture and Food Systems Review
and Advancement

 ISSN 2957-8434(Print)
 ISSN 3007-2883(Online)

SCOPE AND FOCUS
The journal is a forum for the discussion of ideas, scholarly opinions and
case studies of natural and physical science with a high proclivity to
multidisciplinary approaches. The journal is produced bi-annually.

Guidelines for Authors for the Oikos Journal

Articles must be original contributions, not previously published and
should not be under consideration for publishing elsewhere.

Manuscript Submission: Articles submitted to the Oikos - The Zimbabwe
Ezekiel Guti University Bulletin of Ecology, Science Technology, Agriculture
and Food Systems Review and Advancement are reviewed using the double-
blind peer review system. The author’s name(s) must not be included in
the main text or running heads and footers.

OIKOS: The Ezekiel Guti University Bulletin of Ecology, Science

Technology, Agriculture, Food Systems Review and Advancement
Vol. 4 (1&2), 2025

v

A total number of words: 5000-7000 words and set in 12-point font size
with 1.5 line spacing.
Language: British/UK English
Title: must capture the gist and scope of the article
Names of authors: beginning with the first name and ending with the
surname
Affiliation of authors: must be footnoted, showing the department and
institution or organisation.
Abstract: must be 200 words
Keywords: must be five or six containing words that are not in the title
Body: Where there are four authors or more, use et al.
Italicise et al., ibid., words that are not English, not names of people or
organisations, etc. When using more than one citation confirming the
same point, state the point and bracket them in one bracket and in
ascending order of dates and alphabetically separated by semi-colon e.g.
(Falkenmark, 1989, 1990; Reddy, 2002; Dagdeviren and Robertson, 2011;
Jacobsen et al., 2012).

Referencing Style: Please follow the Harvard referencing style in that:
— In-text, citations should state the author, date and sometimes the page
numbers.
— The reference list, centred alphabetically, must include all the works
cited in the article.

In the reference list, use the following guidelines, religiously:

Source from a Journal
Anim, D.O and Ofori-Asenso, R (2020). Water Scarcity and COVID-19

in Sub-Saharan Africa. The Journal of Infection, 81(2), 108-09.
Banana, E, Chitekwe-Biti, B and Walnycki, A (2015). Co-Producing

Inclusive City-Wide Sanitation Strategies: Lessons from
Chinhoyi, Zimbabwe. Environment and Urbanisation, 27(1), 35-
54.

OIKOS: The Ezekiel Guti University Bulletin of Ecology, Science

Technology, Agriculture, Food Systems Review and Advancement
Vol. 4 (1&2), 2025

vi

Neal, M.J. (2020). COVID-19 and Water Resources Management:
Reframing Our Priorities as a Water Sector. Water International,
45(5), 435-440.

Source from an Online Link
Armitage, N, Fisher-Jeffes L, Carden K, Winter K, et al. (2014). Water

Research Commission: Water-sensitive Urban Design
(WSUD) for South Africa: Framework and Guidelines.
Available online:
https://www.greencape.co.za/assets/Water-Sector-Desk-
Content/WRC-Water-sensitive-urban-design-WSUD-for-
South-Africa-framework-and-guidelines-2014.pdf. Accessed
on 23 July 2020.

Source from a Published Book
Max-Neef, M. (1991). Human Scale Development: Concepts,

Applications and Further Reflections, London: Apex Press.

Source from a Government Department (Reports or Plans)
National Water Commission (2004). Intergovernmental Agreement on a

National Water Initiative. Commonwealth of Australia and
the Governments of New South Wales, Victoria, Queensland,
South Australia, the Australian Capital Territory and the
Northern Territory. Available online:
https://www.pc.gov.au/inquiries/completed/water-
reform/national-water-initiative-agreement-2004.pdf.
Accessed on 27 June 2020.

The source from an online Newspaper article
Herald, The (2020). Harare City Could Have Used Lockdown to Clean
Mbare Market. The

Herald, 14 April 2020. Available online:
https://www.herald.co.zw/harare-city-could-have-used-
lockdown-to-clean-mbare-market/. Accessed on 24 June 2020.

https://www.greencape.co.za/assets/Water-Sector-Desk-Content/WRC-Water-sensitive-urban-design-WSUD-for-South-Africa-framework-and-guidelines-2014.pdf
https://www.greencape.co.za/assets/Water-Sector-Desk-Content/WRC-Water-sensitive-urban-design-WSUD-for-South-Africa-framework-and-guidelines-2014.pdf
https://www.greencape.co.za/assets/Water-Sector-Desk-Content/WRC-Water-sensitive-urban-design-WSUD-for-South-Africa-framework-and-guidelines-2014.pdf
https://www.pc.gov.au/inquiries/completed/water-reform/national-water-initiative-agreement-2004.pdf
https://www.pc.gov.au/inquiries/completed/water-reform/national-water-initiative-agreement-2004.pdf

OIKOS: The Ezekiel Guti University Bulletin of Ecology, Science

Technology, Agriculture, Food Systems Review and Advancement
Vol. 4 (1&2), 2025

252

ENHANCING PROGRAMMING

PROFICIENCY, EVALUATING THE
IMPACT OF AI-POWERED CODE

ASSISTANT TOOLS ON LEARNING
OUTCOMES

TRUST MHLANGANISO1 AND MAKOTA JUSTIN2

Abstract
There always exists a naiver, tinier approach to writing good code and, likewise,
a longer and more comprehensive way. Imagine a tool that takes advantage of
deep machine learning algorithms to fish the most appropriate code and put it
in a drop-down menu only for a programmer to select. In recent years, the use
of AI-powered programming tools has grown in leaps and bounds and gained
much attention. Whereas AI has been around for roughly 30 years, it is still
uncertain for educators on how to make instructive advantage of it on a larger
scale and how it can essentially have a profound effect on teaching and learning
in tertiary education. This article investigates the effectiveness of AI-powered
code assistant tools in learning programming. For the research, two leading
coding platforms were picked (eclipse and VS code) and a selected AI-powered
code assistant tool (Tabnine) was installed. After training the research
participants, an experiment was carried out, whereby all 40 participants were
given two tests, one on AI-assistant enabled coding platform and the other on
non-AI-assistant enabled coding platform. Results indicate that AI-coding tools
significantly increase students’ coding efficiency and general motivation to
code. Results also show that AI code assistant tools do not affect participant’s
code comprehension. From the results found it is recommended that AI code

1 Bindura University of Science Education, Department of Computer Science, Zimbabwe,
https://orcid.org/0009-0006-9748-125, tmhlanganiso2001@gmail.com
2 Zimbabwe Ezekiel Guti University, Department of Data Science and Computer
Technology, Zimbabwe https://orcid.org/0009-0006-8648-115X , jmakota@gmail.com

https://orcid.org/0009-0006-9748-125
https://orcid.org/0009-0006-8648-115X

OIKOS: The Ezekiel Guti University Bulletin of Ecology, Science

Technology, Agriculture, Food Systems Review and Advancement
Vol. 4 (1&2), 2025

253

assistant tools must be incorporated to aid students in developing a positive
attitude towards programming and also to improve their coding efficiency.

Keywords: AI-powered, learning, programming, AI-assistant enabled
coding platform, non-AI-assistant enabled coding platform

Introduction
In the global world of Computer Science (CS), it is well documented that
learning to program poses a challenge to many students (Khomokhoana
and Nel, 2020a). Therefore, a lot of strides have so far been undertaken
to try and assist the CS student. Teachers have always been inundated
with trying to come up with good ideas to make students comprehend
programming languages and yet not every idea ever thought of is a
good idea (Ȉ and Ȉ, 2024). Therefore, in this world, to decode how good
an idea is dependent on experiments (Khomokhoana and Nel, 2020b).
The code editors in use today offer a code assistant in the form of a
floating menu coupled with contextually applicable variables, methods
and other code segments. As programmers navigate and make choices
from menu options, they are able to evade countless collective syntax
and logic errors and also eradicate redundant keystrokes. Ongoing
refinements to the code editors have seen the birth of AI-powered code
assistant tools in the market today.

In this study, the effectiveness of AI-powered code assistant tools in
learning computer programming using popular modern IDEs, is
investigated. If computer programming is utterly challenging, then
there is an inevitable prerequisite to make it more intriguing and
attention-grabbing (Zhou et al., 2022). The key medicine to this scenario
is to expose the learner to the complexities of AI-powered code assistant
tools.

This research is based on the following objectives.

1. To measure the impact of GitHub Copilot on the coding
efficiency.

2. To evaluate the effect of using an AI code assistant on code
comprehension.

OIKOS: The Ezekiel Guti University Bulletin of Ecology, Science

Technology, Agriculture, Food Systems Review and Advancement
Vol. 4 (1&2), 2025

254

3. To determine the impact of AI-powered code assistants on
student motivation.

To address the objectives highlighted above, trending AI-powered code
assistant tools are first analysed. In the next segment, an overview of
other work related to AI-powered coding is reviewed. In the coming
sections, trending coding platforms capable of handling AI-powered
code assistant tools to use for the experiment, are selected. The next
section attempts to interpret the results of the study and provide
conclusion, alongside recommendations.

AI-powered code assistant tools
An AI-powered code assistant tool can be described as a tool that is
programmed to mimic how humans came up with decisions. It must
have the capability of providing what most people refer to as an
'artificial thought' that empowers it to solve issues on its own (Saini et
al., 2025). Below are some of the characteristics of an AI-powered code
assistant tool.

It must do things proactively
This involves automation. The tool must be able to do things on its own
without requiring a human to press a button or prompt it to do
something (Zhou et al., 2022).

The AI tool is supportive
An AI-powered tool should be able to supplement work done by its
users via intelligent suggestions and recommendations (Alanazi et al.,
2025).

AI is smart
Any AI-powered code assistant tool is programmed to imitate how
humans arrive at decisions. The tool must provide an ‘artificial thought’
that allows it to solve challenges without human intervention (Tüfekci
and Köse, 2013).

OIKOS: The Ezekiel Guti University Bulletin of Ecology, Science

Technology, Agriculture, Food Systems Review and Advancement
Vol. 4 (1&2), 2025

255

AI continues to learn
Though the tool is already smart, it must continue to acquire
information from its users such that the longer a person uses it, the more
it becomes proficient (Ciniselli et al., 2022)

Types of AI-powered code assistant tools

TabNine
TabNine is an artificial intelligence-based code auto-completer that
assists developers to write codes quicker and is owned by Codota
(Bruch et al., 2018) . It is unique as compared to other code auto
completion tools in that the team that developed it incorporated a deep
learning model. TabNine is built on GPT-2, open-source artificial
intelligence architecture, a product of OpenAI in February 2019 which
uses the Transformer network architecture. At the writing of this article,
GPT-2 comprised 1.5 billion parameters that were trained on a dataset
of 8 million web pages with a simple objective of predicting the next
word, given all of the previous words within some text (Warth, 2008).
GPT-2 generates synthetic text samples in response to the model being
primed with an arbitrary input. It familiarises with the format as well as
content of the conditioning text. This allows the user to generate realistic
and coherent continuations about a topic of their choosing Code auto
completion feature is handled by an external software which TabNine
communicates with by means of the Language Server Protocol (Warth,
2008). TabNine also contains default install scripts that support several
common language servers and is fully configurable, for those who wish
to use a different language server or add code auto completion for a new
language (Alanazi et al., 2025). TabNine is available as a free plugin for
major platforms like:

• IntelliJ PyCharm

• VS Code

• Sublime

• IntelliJ PhpStorm

• VIM

• Atom etc

OIKOS: The Ezekiel Guti University Bulletin of Ecology, Science

Technology, Agriculture, Food Systems Review and Advancement
Vol. 4 (1&2), 2025

256

Figure 1: A Tabnine’s AI engine.
Source: (https://www.tabnine.com)

The TabNine’s AI engine in Figure 1 is grounded on three fundamental
principles, that is, better collaboration, better privacy protection and
better code completion. For coding collaboration, there are new features
that now incorporate the growing suite of tools for teams, that is,
naming your team, invitation of team members and managing your
account, all from your My TabNine profile (Munisamy, 2024). The more
the team members invited and added, the faster the TabNine’s Team
Trained AI. This also implies that Private Codebase Trained AI will have
the opportunity to learn your team’s projects, preferences and patterns
and suggesting even more accurate code completions (ibid.). In enduring
privacy and compliancy, the three TabNine's AI code completion
models can be executed locally and under no circumstances share your
code. Lastly as an AI assistant, the tool provides facilities such
as IntelliSense, IntelliCode, autocompletion, AI-assisted code
completion, AI code snippets, code suggestion, code prediction, code
hinting and content assist (i id.).

OIKOS: The Ezekiel Guti University Bulletin of Ecology, Science

Technology, Agriculture, Food Systems Review and Advancement
Vol. 4 (1&2), 2025

257

Figure 2: Icon of TabNine plugin on VS Code platform

Figure 3: Top two options generated by TabNine plugin AI-code
assistant Tool on VS Code

Kite
Kite is an AI driven coding assistant that offers massive editor
integration facilities, giving the programmer an opportunity to work
seamlessly on the same screen (Liang, 2025). It is freely available and
helps programmers to write their code faster in Python. Kite’s auto
Completions feature takes advantage of deep learning to offer key

OIKOS: The Ezekiel Guti University Bulletin of Ecology, Science

Technology, Agriculture, Food Systems Review and Advancement
Vol. 4 (1&2), 2025

258

context-based code completions in real time. It is installed as a plugin
on your IDE. Kite is able to coach its machine learning models using
thousands of freely open code sources from highly rated developers in
the world (Alanazi et al., 2025). In addition to the above. Kite is also
capable of foretelling quite a lot of “words” of code at a time and is built
on the most sophisticated AI engine available for modelling code (ibid.).
At the time of writing this article, Kite was capable of supporting the
following platforms:

• VS Code,

• IntelliJ Platform

• Vim

• Atom

• Sublime Text etc

Figure 4: Comparison of options generated on IDE without Kite
plugin AI-Tool and another with Kite plugin AI-code assistant Tool

Copilot
This is an AI-based programming tool cooperatively constructed with
GitHub and is built on top of GPT-3 architecture, OpenAI’s prestigious
language model. Copilot is capable of offering relevant suggestions as
you do the coding. Copilot’s website describes it as an “AI pair
programmer” that suggests “whole lines or entire functions right inside

OIKOS: The Ezekiel Guti University Bulletin of Ecology, Science

Technology, Agriculture, Food Systems Review and Advancement
Vol. 4 (1&2), 2025

259

your editor” (ibid.). At times, the user may just type a function signature
or description and Copilot will generate an entire block of code.
Underlying Copilot is a deep learning model called Codex, which is
essentially a distinct version of GPT-3 tailor-made for programming
tasks (Choi, 2025). When in operation, the tool simulates GPT-3 by
accepting a prompt as input and produces a categorisation of bytes as
output. Copilot is perceived as a simple autocomplete coding tool that
is additionally context aware than other code assistants (ibid.). Matt
Shumer, co-founder and CEO of OthersideAI (ibid.) told TechTalks that:
“If you know a bit about what you’re asking Copilot to code for you and you
have enough experience to clean up the code and fix the errors that it introduces,
it can be very useful and save you time,”.
At the time of writing this article, the AI code assistant tool was then
supported by Visual Studio Code and platforms powered by a VS Code
backend such as GitHub's Code spaces. Copilot can work well with
several languages, especially Python, JavaScript, Typescript, Ruby and
Go (Alanazi et al., 2025).

Figure 5: Copilot Engine

OIKOS: The Ezekiel Guti University Bulletin of Ecology, Science

Technology, Agriculture, Food Systems Review and Advancement
Vol. 4 (1&2), 2025

260

Figure 6: Highlighted code generated by Copilot when user simply
types function declaration extracted from
(https://copilot.github.com/)

Overview of AI powered programming tools
 To date, number of papers seem to delve into code assistant tools that
are not powered by AI (Saini et al., 2025). A research done by Bruch et al.
(2009) (Ȉ and Ȉ, 2024), reveals that auto-completion features provided by
current IDE's are grounded entirely on static type system provided by
the programming language. Consequently, most of the predictive texts
on the IDE are inappropriate for that specific working context. Similarly,
these predictive texts are arranged alphabetically instead of by their
relevance in a certain domain.

Bruch et al. (2009) carried research in which they propose smart code
assistant tools that are capable of learning from existing code
storehouses. They investigate three such systems, each by means of the
information contained in storehouses in a different way. They gone on
to execute a large-scale quantitative assessment of smart code assistant
tools, incorporating the top performing one into Eclipse and evaluation
(Alanazi et al., 2025). The result of their experiments suggests that smart
code assistant tools which are able to learn from patterns, significantly
outstrip conventional code completion tools on the basis of the relevance
of their suggestions, thereby offering notable potential towards
enriching programmers' productivity.

https://copilot.github.com/

OIKOS: The Ezekiel Guti University Bulletin of Ecology, Science

Technology, Agriculture, Food Systems Review and Advancement
Vol. 4 (1&2), 2025

261

Aslıhan and Utku (2013) introduced an Artificial Intelligence based
software system, developed to enhance quality of tutoring computer
programming courses in universities. They express that Artificial
Intelligence-based software systems are one of the most effective
learning tools that can be harnessed to reduce difficulties and afford
more effective learning experience for learners. It can be noted that
computer programming learners, for the first time, can also find it
difficult to understand algorithmic thinking as well as other principles
of computer programming, hence the need for an AI-intelligent
assistance tool. Aslıhan and Utku (ibid,) introduced some kind of an
Artificial Intelligence based software system whereby students can take
some exercises using a user-friendly interface and teachers can create
new C Programming-based tasks by using the management interface. In
each task, the teacher can state the problem text and develop what
would be the correct solution to that problem in the same way as a
student would do.

Evaluation instrument of the software system is based on a domain
prepared according to the expert knowledge and domain expert
knowledge of the software system with room for some adjustments. The
software system introduced in this study has been intended for C
Programming and the results reveal that the system ensures a successful
approach on teaching computer programming generally and C
programming specifically. The limitation is that the study concentrated
on one language which is procedural-oriented. Therefore, this study
seeks to extend the research by also including trending Object-oriented
programming languages and powerful AI based programming tools
impacting the world during the writing of this article.

Svyatkovskiy et al. (2019) suggest a new end-to-end approach for AI-
assisted code completion termed Pythia. It is capable of producing
ordered lists of methods as well as API suggestions which can be
harnessed by programmers when writing code (Bruch et al., 2018). Their
tool is currently installed as a component of Intellicode extension
available in Visual Studio Code. Pythia is believed to make use of
trending across-the-board deep learning models that were trained on
various code contexts pulled out from abstract syntax trees. It is set to

OIKOS: The Ezekiel Guti University Bulletin of Ecology, Science

Technology, Agriculture, Food Systems Review and Advancement
Vol. 4 (1&2), 2025

262

operate at a high throughput, foretelling the top most matching code
completions at a rate of 100ms. The outcome from their evaluation on a
large dataset of 15.8 million method calls obtained from practical source
code, demonstrated that their best model achieves 92% which is top-5
accuracy, meaning that they were able to beat simpler baselines. They
triumphed and wrote a number of real-world problems of training deep
neural networks and hyperparameter alteration on HPC clusters and
model deployment on lightweight client devices to foretell the top
matching code suggestions when coding (Tüfekci and Köse, 2013).
However, for future, they recommend that advanced deep learning
methods must be traversed with emphasis on programming languages,
instead of Python and also to explore more sophisticated code
completion situations (Alanazi et al., 2025). It is in this light that the
study dug deeper into these AI-assisted coding tools.

In the last 30 years, Al has grown from research laboratory prototypes
to become a key element in many areas of high-tech development such
as robotics (Profile, 2016). Consequently, AI techniques have also been
applied to education through development of intelligent tutoring
systems (ITS). Leddo and Garg (2021) express that since the advent of
intelligent tutoring systems; there has been an ever-increasing desire to
see if instructive software that uses AI to mimic human instructors can
eventually result in improvements in educational achievement.
Consequently, Tüfekci and Köse (2013) carried a research in which they
found out that students using their AI-based ITS software
outperformed, on average, those using Khan Academy’s software by
80% and those using Pearson Education’s electronic textbooks by 300%.

Milan, et al. (), research developed an Interactive Programming
Assistance tool (iPAT) to help students in solving introductory
programming problems and help instructors in conducting
programming lab sessions effectively. The tool permitted students to
carry out programming exercises and receive collaborative guidance in
getting their programmes to compile and run. However, the tool was
limited in that it assists students and instructors in solving their practical
lab session problems, which comes only with features such as error

OIKOS: The Ezekiel Guti University Bulletin of Ecology, Science

Technology, Agriculture, Food Systems Review and Advancement
Vol. 4 (1&2), 2025

263

handling, remote access, handling PC inventory and a solution archive
to solve common errors only in C# programming.

Concerning this study, none of the articles were found to deal with an
investigation into the effectiveness of AI based programming tools in
the learning of programming languages today and this study is a
valuable addition to the existing research.

Methods /Procedure
The study adopted the Plowright’s Frameworks for an Integrated
Methodology (FraIM). In this model, the research largely concentrated
on collecting narrative and numeric data using observations,
questionnaires as well as analysis of written code (Figure 7).

Figure 7: Plowright’s Frameworks for an Integrated Methodology

This research was conducted at a Zimbabwe higher education
institution. The research group consisted of final-year undergraduate
computer science students. In their first study year, these students take

OIKOS: The Ezekiel Guti University Bulletin of Ecology, Science

Technology, Agriculture, Food Systems Review and Advancement
Vol. 4 (1&2), 2025

264

Computer Science modules that focus on building foundational
knowledge regarding software development, network engineering and
hardware engineering. In their second year, the students will be exposed
to more knowledge in these disciplines, followed by a third year of
internship. Fourth year students were chosen because they would have
explored and acquired vast knowledge during attachment.
The empirical part of the study comprised the following activities.
Activity 1: A popular AI code auto-completion tool was identified and
installed. Activity 2: Students were exposed to AI-enabled IDEs and
trained rigorously and followed by practical based assessments and
observations. Activity 3: Basing on student’s performance, interviews
were carried out on chosen students.

 Activity1: Choosing and Installing AI tools
The market today is characterised with vast AI code assistant tools. In
order to choose the best AI tool, several factors such as portability and
availability were considered. The research needed something that could
easily fit in IDEs that students were familiar with in order to minimise
complexities associated with learning features of new IDEs. In this
regard, the popular IDEs and text editors found in their lab were VS
code, eclipse, NetBeans, Microsoft Visual studio, IntelliJ IDEA., Code
Blocks, etc. Using results of IDEs evaluation, the study chose to use
eclipse IDE and VS code Interpreter. Figure 8 shows Tabnine tool plugin
about to be installed in the eclipse IDE from the eclipse marketplace.
After installation, the plugin is automatically enabled and is highly
context sensitive as demonstrated by Figure 8 below whereby tabnine is
assisting the coder to instantiate a Calculator class in Java.

OIKOS: The Ezekiel Guti University Bulletin of Ecology, Science

Technology, Agriculture, Food Systems Review and Advancement
Vol. 4 (1&2), 2025

265

Figure 8: Tabnine tool under installation on eclipse IDE

Figure 9: Instantiating a calculator class example using tabnine AI-
code assistant tool in Java

OIKOS: The Ezekiel Guti University Bulletin of Ecology, Science

Technology, Agriculture, Food Systems Review and Advancement
Vol. 4 (1&2), 2025

266

Tabnine was also installed on VS code (figure 1) and it was tested using
a simple shape class with a parameterised constructor that accepts base
and height integer arguments to calculate area of a Triangle using C#
(Figure 10). Two context-based lines were generated by Tabnine and are
very relevant to the situation being tackled.

Figure 10: Instantiating an animal class using TabNine AI-code
assistant tool in c#

Activity 2: Data collection
For this research, a total of 40 computer science students were chosen
and split into two groups of 20 each. The first twenty (Group A) was
rigorously trained on Tabnine embedded on eclipse IDE using Java
language and the other 20 (group G) was also trained on Tabnine
embedded on VS code interpreter using c# language. After coaching,
the students were administered two practical-based lab tests which
were written 1. on compiler with an AI-enabled tool; and 2. on a non-
AI-enabled compiler. The study limited the test scope to focus on OOP
questions that can be implemented either using Java or C#. For the tests,
screen recording software during tests was activated and all work saved
for marking. The research also got the opportunity to observe students
during test writing and noted key features explained later in data
analysis phase. The participants saved work and recorded work were
the primary source of data for this activity. After grouping of the

OIKOS: The Ezekiel Guti University Bulletin of Ecology, Science

Technology, Agriculture, Food Systems Review and Advancement
Vol. 4 (1&2), 2025

267

artefacts, the performance data for each participant was then captured
into SPSS package and descriptive statistics was adopted to attempt to
answer the following research objective:
To measure the impact of GitHub Copilot on the coding efficiency

Activity 3: Interviews
A summative assessment based on the practical tests administered
provided the basis for the choosing of students to interview. In this
regard, 10 students from Group A and another 10from Group B were
interviewed. Interviews were set to provide solutions for the last
objective of the research, that is:

1. To assess the effects of AI-powered code assistant tools on students’
motivation

Proper interview questions were drafted and time slots of 20 minutes
were scheduled for each participant. However, the participants were
advised that they could take as much time as they needed to express
themselves. The events of each session were recorded with approval
from the interviewees.

Results and Analysis
In this study, all 40 fourth-year computer science students (100%) took
part in two practical test assessments and a sample of 20 students
participated in interviews and the results were tabulated using the IBM
SPSS Statistical package.

To address the first objective, to assess the effect of AI-powered code
assistant tools on students’ coding efficiency, the study administered
two practical tests for both Group A and Group B. The first test was
written using AI-activated code assistant platform and the second using
non-AI-activated code assistant platform. Efficiency, being the ability to
avoid wasting materials, energy, efforts, money and time when
executing a particular activity, the research assessed efficiency basing
on an evaluation of the number of students who managed to finish the
examination in stipulated time, at the same time attaining at least a pass.
Since two examinations were written by every participant, results were
analysed on that basis. Table 1 shows collated results of the exam

OIKOS: The Ezekiel Guti University Bulletin of Ecology, Science

Technology, Agriculture, Food Systems Review and Advancement
Vol. 4 (1&2), 2025

268

written on AI-Activated code assistant IDE and Table 2 depicts results
of the exam written on non-AI-Activated code assistant IDEs.

Table 1: Results of AI-activated code assistant examination

Table 2: Results of Non-AI-activated code assistant examination

 Final Non-AI-IDE Exam Mark Total

>=50 and
<60

>=60 and
<75

>=75

Did the student finish
non-AI-Enabled
Exam?

 N 5 20 1 26

 Y 0 9 5 14

Total 5 29 6 40

From Tables 1 and 2, it is observed that all participants (40) managed to
pass for both AI and non-AI-activated code assistant platforms.

 Final AI-IDE Exam Mark Total

>=60 and <75 >=75

Did the student finish
AI-Enabled Exam?

N 1 3 4

Y 2 34 36

Total 3 37 40

OIKOS: The Ezekiel Guti University Bulletin of Ecology, Science

Technology, Agriculture, Food Systems Review and Advancement
Vol. 4 (1&2), 2025

269

However- a closer analysis shows that in the AI activated exam, 4 (10%)
did not finish the exam, while in the non AI-activated IDEs, 26 (65%) did
not finish their exam, implying that AI-coding tools help to improve
typing speed and also save time for a student to think of the next token
during coding, since the tool quickly avails such an option for the
programmer to simply click on and concentrate on the next problem.

In order to assess the effect of AI-powered code assistant tools on
students’ code comprehension, the research used a comparison of test
performance results administered on AI-enabaled IDEs versus non-AI-
enabled IDEs and the results are interpreted in Tables 1 and 2. Of
interest is the quality of passes. Results from the AI-activated IDE exam
reveal that a total of 37 (93%) students had passes in the range of 75 to
100, while results from non-AI-activated IDEs show that a total of 6
(15%) had passes in the range 75 to 100. From these results, can be said
that high quality marks were attained on AI-activated code assistant
platforms not because students comprehend the code, but the tool is
intelligent enough to pick up the coder’s goals and consequently present
complex patterns that envision in the students’ thoughts, allowing it to
be able to assist coding in a quite significant way. If participants
comprehend coding, then they should be able to code even better when
using non-AI-enabled code assistant platforms which is not a reflection
of results (see Table 1 versus Table2.

To assess the effects of AI-powered code assistant tools on students’
motivation, a sample of 10 students from Group A were interviewed
and another 10 in Group B and the results are shown in Table 3.

Table 3: Level of motivation of students towards use of AI-code
assistant tools.

 AI tools motivate me to code Total

Strongly agree Agree Not sure

Group A or B
A 6 2 2 10

B 7 2 1 10

Total 13 4 3 20

OIKOS: The Ezekiel Guti University Bulletin of Ecology, Science

Technology, Agriculture, Food Systems Review and Advancement
Vol. 4 (1&2), 2025

270

Results from Table 3 hint that 13(65%) of the participants strongly
believed that AI-coding tools motivates them to love programming,
whereas 4 (20%) were also in agreement and 3 (15%), quite a small
percentage, indicated that they were not so sure. From the results in
Table 3, it can be said that AI-powered code assistant tools play a
significant role towards motivating a student to love to code.

From the observations, the study established that most students looked
uneasy as they were writing the non-AI-enabled code assistant platform
exam, whereas the same students, when exposed to the AI-enabled code
assistant platform exam, looked quite confident and engaged. It was
also observed that the AI coding plugins are generally not aware of what
the programmer is trying to achieve and, therefore, at best, it can
recommend mutual constructs like it has seen before, possibly directed
by the structure of a method.

Conclusion
This study analysed the effectiveness of AI-powered code assistant tools
in learning programming and a sample of 40 final-year computer
science students was used. Two main compilers were chosen (eclipse
and VS code) and Tabnine (an AI coding tool) was installed in order to
try and influence students’ coding efficiency, comprehension and
motivation. After training them on the AI tool, an experiment was
carried out whereby all 40 students were given two tests, one on AI-
enabled IDE and the other on non-AI-enabled IDE and results were
tabulated. Results indicate that AI-coding tools significantly increase
students’ coding efficiency and motivation to coding and that AI code
assistant tools do not affect student’s code comprehension. From the
results, it is recommended that AI-code assistant tools must be
incorporated to aid novice programmers to learn to write code faster
and, with repeated exposure to such tools, they may end up
comprehending code.

For future research, this study proposes an increase of the scope
research to include more compilers and AI tools, especially the one
recently developed by Microsoft termed as Copilot which, at the time of
writing, was not yet available for experiments .There is also need to look

OIKOS: The Ezekiel Guti University Bulletin of Ecology, Science

Technology, Agriculture, Food Systems Review and Advancement
Vol. 4 (1&2), 2025

271

into the issue of copyrights, since under AI-assisted coding, one will be
using other developer’s codes extracted by algorithms from code bases
such as Github and also to look into the issue of security of one’s code,
since the coder will be coding under monitoring of AI plugins installed
on the coding platform running in the background.

REFERENCES
 Alanazi, M., Soh, B., & Samra, H. (2025). PyChatAI : Enhancing Python

Programming Skills — An Empirical Study of a Smart Learning
System.

Bruch, M. et al. (2018). Learning from Examples to Improve Code
Completion Systems.toHAL Id : hal-01575348 Learning from
Examples to Improve Code Completion Systems.

Choi, I. C. (2025). Exploring the Impact of CodeCombat Python
Programming Curriculum on Student Motivation at Primary
School Exploring the Impact of CodeCombat Python
Programming Curriculum on Student Motivation at Primary
School. July. https://doi.org/10.1145/3719487.3719521

Ciniselli, M. et al. (2022). An Empirical Study on the Usage of
Transformer Models for Code Completion. IEEE Transactions
on Software Engineering, 48(12), 4818-4837.
https://doi.org/10.1109/TSE.2021.3128234

Ȉ L. R. and Ȉ I. P. (2024). Factors that Influence Computer Programming
Proficiency inin Higher Education : A Case Study of
Information Technology Students. 36(July), 40-75.

Khomokhoana, P. J. and Nel, L. (2020a). Decoding Source Code
Comprehension: Bottlenecks Experienced by Senior Computer
Science Students. Communications in Computer and
Information Science: Vol. 1136 CCIS (Issue January).
https://doi.org/10.1007/978-3-030-35629-3_2

Munisamy, M. (2024). Code, Click, Learn : A Systematic Review of
Online Assessment Tools in 21st Century Programming. March.
https://doi.org/10.35631/IJMOE.620027

Saini, D. A., Sharma, M. D. and Tripathi, M. K. (2025). Artificial
Intelligence (AI) in Education: Using AI Tools for Teaching and
Learning Process. Ijireeice, 13(2).
https://doi.org/10.17148/ijireeice.2025.13206

OIKOS: The Ezekiel Guti University Bulletin of Ecology, Science

Technology, Agriculture, Food Systems Review and Advancement
Vol. 4 (1&2), 2025

272

Tüfekci, A.and Köse, U. (2013). Development of an Artificial
Intelligence-based Software System on Teaching Computer
Programming and Evaluation of the System. Journal of
Education), 28(2), 469-481.

Warth, A. (2008). Experimenting with Programming Languages.
0639876, 0–122.
http://www.vpri.org/pdf/tr2008003_experimenting.pdf

Zhou, W. et al. (2022). Improving Code Autocompletion with Transfer
Learning. Proceedings - International Conference on Software
Engineering, 161–162. https://doi.org/10.1109/ICSE-
SEIP55303.2022.9793983

	Pages from Oikos 4(1&2) 2025 Final.pdf
	Pages from Oikos 4(1&2) 2025 Final-12.pdf

